

COMPEX COMMERCE

Process Specification

DialogDSL

Version 1.0

Date: 30.10.15

DSL_intern_en-PS_DialogDSL.docx 2

Contents

1 Introduction 4

1.1 Vaadin 4

1.2 Vaaclipse 4

2 DialogDSL 4

2.1 Syntax 5

2.1.1 Package definition 5

2.1.2 dialog 6

DSL_intern_en-PS_DialogDSL.docx 3

All rights are reserved by Compex Systemhaus GmbH. In particular, duplications, translations,

microfilming, saving and processing in electronic systems are protected by copyright. Use of this

manual is only authorized with the permission of Compex Systemhaus GmbH. Infringements of the

law shall be punished in accordance with civil and penal laws.

We have taken utmost care in putting together texts and images. Nevertheless, the possibility of

errors cannot be completely ruled out. The Figures and information in this manual are only given as

approximations unless expressly indicated as binding. Amendments to the manual due to

amendments to the standard software remain reserved. Please note that the latest amendments to

the manual can be accessed through our helpdesk at any time. The contractually agreed regulations

of the licensing and maintenance of the standard software shall apply with regard to liability for

any errors in the documentation. Guarantees, particularly guarantees of quality or durability can

only be assumed for the manual insofar as its quality or durability are expressly stipulated as

guaranteed.

If you would like to make a suggestion, the Compex Team would be very pleased to hear from you.

 2015 Compex Systemhaus GmbH

PS_DialogDSL_1_0 Created Checked Released

Date

Signature

DSL_intern_en-PS_DialogDSL.docx 4

1 Introduction

1.1 Vaadin

Vaadin is a web application framework for Java. In contrast to Javascript libraries and browser-

plugin based solutions, Vaadin features a complete stack that includes a robust server-side

programming model as well as client-side development tools based on GWT and HTML5.

More information:

https://vaadin.com/home

1.2 Vaaclipse

Vaaclipse is a framework for building web applications using Eclipse 4 Platform and Vaadin. It

allows to use the power of the Eclipse 4 in web development. Vaaclipse moves the Eclipse

Platform to Web using the rich web capabilities of Vaadin. You create your web application using

Eclipse 4 features such as Eclipse Workbench, Application Model, Dependency Injection. You

provide your own application parts using Vaadin widget library.

2 DialogDSL
DialogDSL generates the vaddin ui.

The main semantic elements of the DialogDSL are:

 package” - the root element that contains all the other elements. A model can contain multiple

packages.

 “import” declarations - used to import external models or even Java classes.

 “dialog” - define the dialog configurations, e.g. ui view configuration, handler type, etc..

 “view” - define the ui view for this dialog.

 “handler” - define the handler type for this dialog, e.g. default, new, save, cancel, delete.

https://vaadin.com/home

DSL_intern_en-PS_DialogDSL.docx 5

2.1 Syntax

2.1.1 Package definition

► Syntax:

package <package name> {

 import <import models/class name>

 ...

 dialog <dialog name> view <ui model name>[handler {

 . . .

 }]

 refreshingView <refreshingView String>

 ...

}

 Note:

ui model is defined in a xx.uimodel file, which using Dto models for the data exchanging with

database. See the following example.

► Example:

xx.dialog:

package de.compex.foodmart.views {

 import de.compex.foodmart.uimodels.*

 . . .

 dialog Employees view EmployeeDialog handler {

 default new save cancel delete

 }

 refreshingView "EmployeesTable"

 . . .

}

xx.uimodel:

package de.compex.foodmart.uimodels

import de.compex.foodmart.dtos.*

ideview EmployeeDialog {

 datasource dsEmployee : MemployeeDto

 verticalLayout {

 horizontalLayout {

 autowire source dsEmployee

 }

 }

}

DSL_intern_en-PS_DialogDSL.docx 6

2.1.2 dialog

► Syntax:

dialog <dialog name> view <ui model name>[handler {

 <dialog handler>

 }]

 refreshingView <refreshing View String>

► Simplified syntax (see 2.2):

dialog <dialog name> autobind <dto name> ...

Generate a <dialogname>+Vaaclipse.java file, in which a java class named

<dialogname>+Vaaclipse extended from java class AbstractHybridVaaclipseView is

defined. In this class, dialog and dialog configurations are defined.

For each handler, generate a <dialogname>+ <UPPER HANDLERNAME>+ Handler.java, in

which a java class <dialogname>+ <UPPER HANDLERNAME>+ Handler is defined. The

methods canExecute and execute+<handlername> are defined in this file, and they will be used as

handlers by an Eclipse 4 application.

 Notes:

dialog handler is including default, new, save, cancel and delete.

refreschingView is automatically set
eventBroker.send(EventBrokerConstants.REFRESH_VIEW+"refresching View

String", null); with every handleEvent in subscribe().

► Example:

dialog Employees view EmployeeDialog handler {

 default new save cancel delete

 }

 refreshingView "EmployeesTable"

 Employees Dialog:

DSL_intern_en-PS_DialogDSL.docx 7

DSL_intern_en-PS_DialogDSL.docx 8

 Employees Table:

When we select a row in employees table, the details of table will be automatically showed in

employees dialog, and then, we could modify all details of this record in database using this dialog.

2.2 Extension: Direct use of DTOs

The DialogDSL has been extended to allow for a simpler use of DTOs. Using this new syntax, it is

no longer necessary to reference a datasource from a ui model since DTOs can now be addressed

directly. See the following example:

► Example:

dialog Products autobinding ProductDto toolbar Dialog

This extension works as follows: A transient ui model is generated directly in the DialogDSL. This

ui model is never serialized to disk.

In the lifecycle of the dialog model, this ui model is automatically converted to an ECView model

and written to disk as an .ecview file.

To achieve this, a DialogDslDerivedStateComputer has been created that generates the transient ui

model “on the fly” and adds it to the resource as a “derived state”.

In a second step, the DialogDslStateComputer calls the UiModelDerivedStateComputerx and

passes the transient ui model to it. Thus, the (transient) ui model is translated to an ECView model.

In a last step, the DialogModelGenerator reads the ECView model from the resource, serializes it

using XMLResource and writes it to disk.

 As an added benefit, the respective models can immediately be found in the XtextIndex

(CTRL+SHIFT+F3) since both ui model and ECView model are generated before the

ResourceDescriptions are created.

